Plutonium-Rhodium $\mathrm{Pu}_{5} \mathrm{Rh}_{\mathbf{4}}{ }^{\text {* }}$

By Don T. Cromer
University of California, Los Alamos Scientific Laboratory, Los Alamos, NM 87545, USA

(Received 5 October 1976; accepted 15 February 1977)

Abstract

Pu}_{5} \mathrm{Rh}_{4}\), Pnma, $Z=4, a=7.276$ (2), $b=$ 14.332 (4), $c=7.419$ (2) $\AA, \rho_{c}=13.79 \mathrm{~g} \mathrm{~cm}^{-3}$. Data were collected on an automatic diffractometer. The structure was solved by direct methods and refined by full-matrix least squares. $R_{w}=0.0417$ for 1063 observed reflections. $\mathrm{Pu}-\mathrm{Pu}$ distances range from 3.316 to $3.945 \AA, \mathrm{Pu}-\mathrm{Rh}$ distances from 2.714 to $3.214 \AA$ and $\mathrm{Rh}-\mathrm{Rh}$ distances from 2.749 to $3.826 \AA$. The structure is similar to those of $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{4}$.

Introduction. The $\mathrm{Pu}-\mathrm{Rh}$ phase diagram has been given by Kutaitsev, Chebotarev, Lebedev, Andrianov, Konev \& Menshikova (1965) who report the binary compounds $\mathrm{Pu}_{2} \mathrm{Rh}, \mathrm{Pu}_{5} \mathrm{Rh}_{3}, \mathrm{Pu}_{5} \mathrm{Rh}_{4}, \mathrm{PuRh}, \mathrm{Pu}_{3} \mathrm{Rh}_{4}$, PuRh_{2} and PuRh_{3}. The above authors found that PuRh_{2} has the $\mathrm{Cu}_{2} \mathrm{Mg}$ structure and that PuRh_{3} has the AuCu_{3} structure. Benzosikova, Chebotarev, Luk'yanov, Chernyi \& Smirnova (1974) have reported the structure of $\mathrm{Pu}_{5} \mathrm{Rh}_{3} . \mathrm{Pu}_{5} \mathrm{Rh}_{3}$ has a tetragonal structure, different from the other $\mathrm{Pu}_{5} X_{3}$ compounds which otherwise have either the $\mathrm{W}_{5} \mathrm{Si}_{3}$ or the $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure. In addition to the above compounds, Cromer \& Larson (1977) have reported $\mathrm{Pu}_{31} \mathrm{Rh}_{20}$. After the present work on $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ was completed the work of Chebotarev \& Beznosikova (1976) on $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ and $\mathrm{Pu}_{5} \mathrm{Ir}_{4}$ was published. The authors used film techniques for intensity measurements. Most of their structural parameters are close to those found in the present work but there are significant differences in cell dimensions.

An alloy containing $45 \mathrm{at} . \% \mathrm{Rh}$ was prepared by arc melting, followed by heat treatment at $950^{\circ} \mathrm{C}$ for 76 h .

* Work performed under the auspices of the US Energy Research and Development Administration.

Table 1. Crystallographic data for $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$

	Present work	 Beznosikova (1976)
Space group	Pnma	Pnma
$a(\lambda=0.70930 \AA)$	$7.276(2) \AA$	$7.263 \AA$
b	$14.332(4)$	14.48
c	$7.419(2)$	7.464
Z	4	4
$d_{\text {cale }}$		$13.59 \mathrm{~g} \mathrm{~cm}^{-3}$
$d_{\text {meas }}$ (of ingot)	$13.79 \mathrm{~g} \mathrm{~cm}^{-3}$	
μ	$582 \mathrm{~cm}^{-1}$	

Single crystals were found among the crushed fragments. Preliminary precession photographs showed the crystals to be orthorhombic with space group Pnma, if centrosymmetric. Reflections 0 kl were absent unless $k+l=2 n$ and reflections $h k 0$ were absent unless $h=2 n$. All other classes were present. The volume of the unit cell was such that four formula units of $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ could be reasonably accommodated. Crystallographic data are given in Table 1, and compared with the results of Chebotarev \& Beznosikova (1976).

Intensity data were collected on an automated Picker diffractometer and processed in the manner given by Cromer \& Larson (1977). Reflections were measured for $h \geq 0$ and all values of k and l with graphite-monochromated Mo Ka radiation. The crystal used was so irregular in shape that approximation of the shape by plane faces and subsequent analytical absorption corrections could not be made. Spherical absorption corrections with the mean radius of the irregularly shaped crystal plus empirical absorption corrections (Furnas, 1957; Cromer \& Larson, 1972) were therefore made. Information concerning data collection and reduction is given in Table 2.

Table 2. Data collection and reduction

$\left.\begin{array}{lc}\text { Radiation } & \begin{array}{c}\text { Mo } K \alpha\end{array} \\ \text { (graphite-monochromated) }\end{array}\right) 60^{\circ}$.

Table 3. Final positional parameters for $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$

	Equipoint	x	y	z
$\mathrm{Pu}(1)$	$4(c)$	$0.32245(14)$	$\frac{1}{4}$	$0.01077(9)$
$\mathrm{Pu}(2)$	$8(d)$	$0.34236(10)$	$0.62196(4)$	$0.16361(6)$
$\mathrm{Pu}(3)$	$8(d)$	$0.00148(10)$	$0.40796(4)$	$0.17796(6)$
$\operatorname{Rh}(1)$	$4(c)$	$0.1898(3)$	$\frac{1}{4}$	$0.3529(2)$
$\operatorname{Rh}(2)$	$4(c)$	$0.4602(3)$	$\frac{1}{4}$	$0.6114(2)$
$\operatorname{Rh}(3)$	$8(d)$	$0.1845(2)$	$0.5391(1)$	$0.4609(1)$

With the assumption of the centrosymmetric space group $P n m a$ and four formula units of $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$, direct methods easily found the correct structure. Refinement was by full-matrix least squares with anisotropic thermal parameters. Positional parameters are given in Table 3.* Refinement minimized $\Sigma w(\Delta F)^{2}$ and used relativistic Hartree-Fock scattering factors (Cromer \& Waber, 1974) and the anomalous dispersion terms of Cromer \& Liberman (1970). $R=\Sigma|\Delta F| / \Sigma F_{o}$ and $R_{w}=\left[\Sigma w(\Delta F)^{2} / \Sigma w F_{o}^{2}\right]^{1 / 2}$, with unobserved reflections omitted, were 0.0385 and 0.0417 respectively; the goodness of fit was 1.64.

[^0]Discussion. Interatomic distances are given in Table 4. Two atoms are defined as neighbors if the midpoint

Table 4. Interatomic distances (\AA) in $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$

$\mathrm{Pu}(1)-2 \mathrm{Pu}(2)$	$3 \cdot 315$ (1)	$\mathrm{Pu}(3)-2 \mathrm{Rh}(3)$	3.792 (1)
$-2 \mathrm{Pu}(2)$	$3 \cdot 382$ (1)	-Rh(1)	2.947 (2)
$-2 \mathrm{Pu}(3)$	3.491 (1)	-Rh(1)	$3 \cdot 213$ (2)
$-2 \mathrm{Pu}(3)$	3.486 (1)	-Rh(2)	$3 \cdot 134$ (1)
-Rh(1)	2.716 (2)	-Rh(3)	$2 \cdot 896$ (2)
-Rh(1)	2.858 (3)	-Rh(3)	3.096 (1)
$-\mathrm{Rh}(2)$	2.787 (2)	-Rh(3)	$3 \cdot 117$ (1)
$-\mathrm{Rh}(2)$	$3 \cdot 128$ (2)	-Rh(3)	$3 \cdot 149$ (2)
$-2 \mathrm{Rh}(3)$	3.045 (2)	$\mathrm{Rh}(1)-\mathrm{Pu}(1)$	$2 \cdot 716$ (2)
$\mathrm{Pu}(2)-\mathrm{Pu}(1)$	3.315 (2)	$-\mathrm{Pu}(1)$	$2 \cdot 858$ (3)
$-\mathrm{Pu}(1)$	$3 \cdot 382$ (1)	$-2 \mathrm{Pu}(2)$	2.956 (1)
$-\mathrm{Pu}(2)$	3.670 (2)	$-2 \mathrm{Pu}(3)$	2.947 (2)
$-2 \mathrm{Pu}(2)$	3.857 (1)	$-2 \mathrm{Pu}(3)$	3.213 (2)
$-\mathrm{Pu}(3)$	3.483 (1)	-Rh(2)	2.747 (3)
$-\mathrm{Pu}(3)$	3.587 (1)	-Rh(2)	3.828 (3)
$-\mathrm{Pu}(3)$	3.802 (1)	$\mathrm{Rh}(2)-\mathrm{Pu}(1)$	$2 \cdot 787$ (2)
$-\mathrm{Pu}(3)$	3.946 (1)	$-\mathrm{Pu}(1)$	$3 \cdot 128$ (2)
-Rh(1)	2.956 (1)	$-2 \mathrm{Pu}(2)$	2.867 (2)
$-\mathrm{Rh}(1)$	2.956 (1)	$-2 \mathrm{Pu}(2)$	$2 \cdot 892$ (2)
- $\mathrm{Rh}(2)$	2.867 (2)	$-2 \mathrm{Pu}(3)$	$3 \cdot 134$ (1)
$-\mathrm{Rh}(2)$	2.892 (2)	Rh(1)	2.747 (3)
$-\mathrm{Rh}(3)$	2.755 (1)	$-\mathrm{Rh}(1)$	3.828 (3)
-Rh(3)	2.763 (1)	$\mathrm{Rh}(3)-\mathrm{Pu}(1)$	3.045 (2)
-Rh(3)	2.909 (2)	-Pu(2)	2.755 (1)
$\mathrm{Pu}(3)-\mathrm{Pu}(1)$	3.481 (1)	$-\mathrm{Pu}(2)$	2.763 (1)
$-\mathrm{Pu}(1)$	3.486 (1)	$-\mathrm{Pu}(2)$	2.909 (2)
$-\mathrm{Pu}(2)$	3.483 (1)	$-\mathrm{Pu}(3)$	2.896 (2)
$-\mathrm{Pu}(2)$	3.587 (1)	$-\mathrm{Pu}(3)$	3.096 (1)
$-\mathrm{Pu}(2)$	3.802 (1)	$-\mathrm{Pu}(3)$	$3 \cdot 117$ (1)
$-\mathrm{Pu}(2)$	3.946 (1)	$-\mathrm{Pu}(3)$	$3 \cdot 149$ (2)
$-\mathrm{Pu}(3)$	3.733 (1)	-Rh(3)	2.968 (3)

Fig. 1. Unit-cell contents of $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ with the three Pu polyhedra outlined. The origin is at the lower, left rear and the view is approximately along $x . \mathrm{Pu}(1)$ at $0 \cdot 882, \frac{1}{4}, 0.489$ is on the left, $\mathrm{Pu}(2)$ at $0 \cdot 842,0 \cdot 622,0 \cdot 336$ is in the middle and $\mathrm{Pu}(3)$ at $0 \cdot 999.0 \cdot 908.0 \cdot 822$ is on the right.

Fig. 2. Unit-cell contents of $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ with the three Rh polyhedra outlined. The origin and view direction are as in Fig. 1. $\mathrm{Rh}(1)$ at $0 \cdot 690 \cdot \frac{1}{4}, 0 \cdot 147$ is on the left. $\mathrm{Rh}(3)$ at $0 \cdot 185,0 \cdot 539.0 \cdot 461$ is in the middle and $\mathrm{Rh}(2)$ at $0 \cdot 540, \frac{3}{4}, 0 \cdot 389$ is on the right.
between the atoms is closer to these two atoms than to any other atom. The convex polyhedra formed by these neighbors are shown in Figs. 1 and 2. All distances are normal and the thermal parameters do not suggest any disorder.
$\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ has a structure similar to that of $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ (Smith, Johnson \& Tharp, 1967) and $\mathrm{Gd}_{5} \mathrm{Si}_{4}$ (Iglesias \& Steinfink, 1972); these authors have discussed important features of the structure. The space group, axial ratios and equipoints occupied are the same for the three compounds but positional parameters are significantly different. Indeed, Iglesias \& Steinfink (1972) state that they could not refine the structure of $\mathrm{Gd}_{5} \mathrm{Si}_{4}$ when they started with the $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ parameters. The parameters for $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ found by Chebotarev \& Beznosikova (1976) and those of $\mathrm{Sm}_{5} \mathrm{Ge}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{4}$ are reproduced in Table 5. Equivalent atoms have been chosen and reordered so that they can be compared with each other and with those in Table 3. The parameters from the two determinations of the $\mathrm{Pu}_{5} \mathrm{Rh}_{4}$ structure are virtually the same, except for those of Rh(3).

The main differences among these three $M_{5} X_{4}$ compounds are in the values of the x parameters, the

Table 5. Comparison of parameters of $M_{5} X_{4}$ structures

	$\mathrm{Sm}_{5} \mathrm{Ge}_{4}{ }^{(1)}$	$\mathrm{Gd}_{5} \mathrm{Si}_{4}^{(2)}$	$\mathrm{Pu}_{5} \mathrm{Rh}_{4}{ }^{(3)}$
$M(1) x$	$0.2880(8)$	$0.3560(1)$	0.322
z	$-0.0024(8)$	$0.0113(1)$	0.011
$M(2) x$	$0.3795(5)$	$0.3164(1)$	0.342
y	$0.6157(3)$	$0.6223(0)$	0.622
z	$0.1612(5)$	$0.1795(1)$	0.162
$M(3) x$	$-0.0253(5)$	$0.0289(1)$	0.001
y	$0.3996(3)$	$0.4028(0)$	0.410
z	$0.1781(5)$	$0.1827(1)$	0.180
$X(1) x$	$0.1761(15)$	$0.2411(10)$	0.190
z	$0.3667(15)$	$0.3746(10)$	0.356
$X(2) x$	$0.4132(16)$	$0.4787(10)$	0.459
z	$0.6115(15)$	$0.5986(10)$	0.607
$X(3) x$	$0.2206(11)$	$0.1435(6)$	0.194
y	$0.5449(6)$	$0.5395(3)$	0.534
z	$0.4688(11)$	$0.4716(7)$	0.451

(1) Smith et al. (1967). (2) Iglesias \& Steinfink (1972). (3) Chebotarev \& Beznosikova (1976).

Table 6. Number of neighbors in $M_{5} X_{4}$ structures

	$\mathrm{Pu}_{5} \mathrm{Rh}_{4}$	$\mathrm{Sm}_{5} \mathrm{Ge}_{4}$	$\mathrm{Gd}_{5} \mathrm{Si}_{4}$
	$8 M$	$8 M$	$8 M$
$M(1)$	$6 X$	$6 X$	$6 X$
	$9 M$	$8 M$	$10 M$
$M(3)$	$6 X$	$6 X$	$6 X$
	$9 M$	$8 M$	$10 M$
$X(1)$	$7 X$	$7 X$	$7 X$
	$8 M$	$8 M$	$8 M$
$X(2)$	$2 X$	$4 X$	$4 X$
$X(3)$	$8 M$	$8 M$	$8 M$
	$2 X$	$4 X$	$2 X$
	$8 M$	$8 M$	$8 M$
	$1 X$	$2 X$	$1 X$

extremes occurring for $M=\mathrm{Sm}$ and Gd , with $M=\mathrm{Pu}$ intermediate. Using the same, objective definition of neighbor we can examine the differences in the resulting polyhedra. The number of neighbors for each atom in the three compounds is shown in Table 6. $M(1)$ has the same polyhedron in all three compounds, an approximately cubic array of eight M atoms with $6 X$ atoms out from each cube face. M (2) for $M=\mathrm{Sm}$ has the same number and kind of neighbors as M (1) but, because of the shifts in the $M(2)$ position, $\mathrm{Pu}(2)$ has one more $\mathrm{Pu}(3)$ neighbor and $\mathrm{Gd}(2)$ has two extra $\operatorname{Gd}(3)$ neighbors. Sm(3) has eight M and seven X neighbors and again because of the changing $M(2)$ position $\mathrm{Pu}(3)$ has one extra $\mathrm{Pu}(2)$ neighbor and $\mathrm{Gd}(3)$ has two extra $G d(2)$ neighbors. All of the $M(2)$ and M (3) polyhedra are so irregular as to defy simple description.
$X(1)$ and $X(2)$ have basically the same polyhedra for the closest nine neighbors, namely a trigonal prism of M atoms with two M and one X out from the rectangular prism faces. However, $\mathrm{Rh}(1), \mathrm{Rh}(2)$ and $\mathrm{Si}(2)$ have an additional X neighbor and $\mathrm{Si}(1), \mathrm{Ge}(1)$ and $\mathrm{Ge}(2)$ have three additional X neighbors more distant. The $X(3)$ neighbors are eight M atoms in a crude antiprism. Additionally $\mathrm{Si}(3)$ and $\mathrm{Rh}(3)$ have one X atom at one end of the antiprism and $\mathrm{Ge}(3)$ has X atoms at each end of the antiprism.

All calculations were performed on a CDC-7600 computer with the $L A S L$ crystal codes developed by A. C. Larson. Thanks are due to V. O. Struebing for preparing the alloy.

References

Beznosikova, A.V., Chebotarev, N. T., Luk’yanov, A., Chernyı, A. V. \& Smirnova, E. A. (1974). At. Energ. (USSR), 37, 144-148.
Chebotarev, N. T. \& Beznosikova, A. V. (1976). Plutonium 1975 and Other Actinides, edited by H. Blank \& R. Lindner, pp. 115-119. New York: American Elsevier.
Cromer, D. T. \& Larson, A. C. (1972). Acta Cryst. B28, 1016-1022.
Cromer, D. T. \& Larson, A. C. (1977). Acta Cryst. B33. In the press.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
Furnas, T. C. (1957). Single-Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
Iglesias, J. E. \& Steinfink, H. (1972). J. Less-Common Met. 26, 45-52.
Kutartsev, V. I., Chebotarev, N. T., Lebedev, I. G., Andrianov, M. A., Konev, V. N. \& Menshikova, T. S. (1965). Plutonium 1965, edited by A. E. Kay \& M. B. Waldron, pp. 420-449. London: Chapman \& Hall.
Smith, G. S., Johnson, Q. \& Tharp, A. G. (1967). Acta Cryst. 22, 269-272.

[^0]: * Lists of the final least-squares cycle, structure factors, anisotropic thermal parameters and interatomic-distance, thermalellipsoid and polyhedron calculations have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32508 (29 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

